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Abstract- This paper presents the state of the art in the interdisciplinary research work on the
development and application of modeling and veri�cation techniques corresponding to the modern level
of distributed control applications. We consider veri�cation of function blocks following to the being
developed international standard IEC61499, and suggest new modeling formalism of Signal/Net Sys-
tems (SNS), which is a place/transition net with usual token-ow arcs from places to transitions and
vice versa, as well as with event arcs from transitions to transitions, and condition arcs from places
to transitions which correspondingly force or enable transitions without passing tokens. Controller is
modeled in a full deterministic and synchronous way (all the transitions �re according to the earliest
�ring rule) as a non-timed place/transition net, while the model of plant might have spontaneous tran-
sitions and discrete-timed arcs to model time consuming processes. Veri�cation of controller/plant
closed-loop system includes investigation of reachability problems for standalone controller and object,
as well as proving safety properties for the closed-loop system. To express the latter we use an ex-
tended version of Timed Computation Tree Logic (TCTL), which operates both in terms of places and
transitions.

1 Introduction

Current practice of automation goes through the change
to distributed architectures based on smart �eld de-
vices instead of centralized programmable logic con-
trollers. Correspondingly, new IEC standard 61499 [2]
attempts to set the general rules of the development
of distributed event-driven applications, upgrading the
current practice ruled mostly by the IEC1131-3 stan-
dard [1].

Formal �nite-state veri�cation of measurement and
control applications, well developed theoretically, cur-
rently experiences the growing demand by practical en-
gineers. If properly applied, it promises the following
results:

� Validation of that application behaves as speci-
�ed, i.e. its outputs comply with formal speci�-
cations when speci�ed inputs are imposed.

� Avoidance of undesirable states: check whether
the application might come to a dead state, or it
forces the system under control to move to the
state speci�ed as dangerous.

� Check whether di�erences in hardware or soft-
ware architectures (to which the distributed ap-
plications are especially often subjected ) might
inuence the behavior of the application.

� Non-trivial disclosure of never executable steps.
According to the practice or rules accepted in
many companies, control applications have to con-
tain 100% tested code. Disclosure of never exe-

cutable code is an important step to ful�ll such
requirements.

The general framework of the veri�cation of real-
time applications characterizes by three following com-
ponents:

1. State/Transition formalism for modeling compo-
nents of the application (controller) and environ-
ment (plant),

2. Speci�cation language to de�ne the desired (or
undesired) behavior of the system.

3. Model checking facilities, capable to prove the
validity or invalidity of the speci�cations for the
given model.

Some previously accomplished works [5, 6, 7, 4] con-
vinced us in the ability of Signal/Net systems to serve
as the proper formalism. However, changing nature (or
structure) of the modeled systems constantly requires
to adjust some of the properties of the formalism to
provide more adequate modeling and more exact veri-
�cation results.

In this paper we discuss the reasons inuenced mod-
i�cation of the formalism arised by the modeling of
IEC1499 applications and interconnected systems, con-
sisting of such applications and models of the environ-
ment. The paper is structured as follows: In Chapter
2 we discuss the new requirements to the modeling for-
malisms derived from the analisis of IEC61499. Chap-
ter 3 presents the formal de�nition of the Signal Net
Systems modeling formalism and the extended speci�-
cation language of timed computation tree logic with
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cation of SNS for modeling of basic structures of the
controllers, and in Chapters 5 and 6 we show some de-
tails of modeling the structures of IEC 61499. Short
discussion of the plans for future development of the
modeling and veri�cation of the IEC61499 applications
concludes the paper.

2 Speci�c requirements to mod-
eling of IEC1499 program struc-
tures

According to the draft of IEC61499 [2], the generic
structure of an application is a function block, which
can be either basic or composite. Functionality of a
basic function block in IEC61499 is provided by means
of algorithms, which process input and internal data
and generate output data. The block consists of head
and body, where the head is connected to the event
ow, and the body to the data ow. The algorithms
included in the block are programmed in the languages
de�ned in IEC 1131. An application which is de�ned
as a collection of interacting function blocks, connected
by event and data ows, can be distributed over multi-
ple resources and devices which is the signi�cant di�er-
ence of this new approach in contrast to IEC 1131. For
example, as illustrated in Figure 1, a control applica-
tion may include a function block FB1, implementing
the controller itself, as well as a block FB3 responsi-
ble for operator interface (displaying the current state
of the system and processing human interactions), and
a block FB2 which implements a locking controller or
supervisor. All these may be supplied by some stan-
dard or user de�ned blocks (IN1,OUT3) implementing
a communication interface of devices where the blocks
reside. For instance, the controller may be placed in
one device D1 (let us say, a PLC), the operator inter-
face in another device (PC) - D2, and the supervisor
in another resource of the �rst device (PLC) - D1.

FB 1

D 2D 1

FB 2

FB 3

OUT3

IN1

Figure 1: An example of distributed application.

When modeling of such a structure is concerned,
especially combined with modeling of plant, one has
to take in account the following considerations:

� The model of plant has to reect asynchronous
nature of the real plant. Thus if two units co-
exist in the plant, one of which generates event
1 and the other event 2, then the model has to
provide all possible combinations of the events:
none, only event 1, event 1 before event 2, only
event 2, event 2 before event 1, event 1 and event
2 simultaneously.

provide an ability to generate �nite (processing)
sequences of states, initiated by either of the event
combinations. These sequences sometimes have
to be not interrupted by new events of the plant,
while sometimes a certain parts of the controller
register new events, while the other execute the
processing sequences. Implementation of such a
behavior requires either to except the earliest �r-
ing rule of the transitions (all the transitions �re
as soon as they become enabled), or force them
by an external clock transition.

� If the controller contains several modules, which
are distributed among di�erent devices (or re-
sources, as they de�ned in IEC1131 or IEC61499),
various combinations of clock transition �ring has
to be modeled. Consider the sketch example
given in Figure 2. The "controller" part of the
system consists of three components: Controller
1 which registers the event 1 executing the se-
quence S11,S12,S13, and generating the output
event 3; the similarly functioning Controller 2,
which registers event 2; and the View component,
which displays the number of occurred events
based on the data (events) generated by the con-
trollers 1 and 2. In the reality the parts may
be executed by di�erent combinations of devices.
Thus, we can imagine the state when even simul-
taneously occurred events 1 and 2 are followed
by the incorrect display "1" due to the di�erent
speed of Controllers 1 and 2. Correspondingly
the state space of the model must include the
state (or states), reecting such a situation.

Model

of plant

event 1

event 2

event 4

event 3
S11 A1

B1

S21

S0

S12 A2

B2

C2

S22

S13

S23

Controller 1

Controller 2

View

0 events

1 event

2 events

Figure 2: Processing of events by controller built of 3 compo-
nents.

� When the (discretely) timedmodels are concerned,
it must be noted that controller and plant have
di�erent time scales. Implementation of controllers'
clock generator often requires to include the "syn-
chronizer" transition of each controller in every
state transition.

Certainly this behavior can be somehow modeled
within currently existing formalisms, either asynchronous
such as pure Petri nets, or synchronous, such as Grafcet.
In both cases, however, the model loses its clarity due
to various complications.

3 Signal/Net systems

3.1 General remarks

The distinctive feature of the SNS is that they pre-
serve the graphical notation and the non-interleaving
semantics of Petri nets and extend it with a clear and
concise notion of signal inputs and outputs. Primar-
ily these models were called Net Condition Event Sys-
tems (abbr. NCES), and later Signal/Net Systems.
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tem problems, including controller synthesis, veri�ca-
tion, and performance analysis and evaluation. The
SNS support the way of thinking of and modeling a
system as a set of modules with a particular dynamic
behavior and their interconnection via signals. The
behavior of a module can be described by a Petri net
in the classical sense or even by a SNS. Each mod-
ule is equipped with inputs and outputs of two types:
condition inputs/outputs carrying state information,
and event inputs/outputs carrying state transition in-
formation. An illustrative example of the graphical
notation of a module is provided in Figure 3.

A module

event input

event output

event output arc

transition

flow arc

token

place

module
boundary

event input arc

condition input
condition input arc

condition
output

condition
output arc

Figure 3: A Signal/Net System module.

Condition input signals as well as event input sig-
nals are connected with transitions inside the module.
Whether a transition of a module �res does not only
depend on the current marking (as it is the case in
classical Petri nets) but also on the incoming condi-
tion and event signals. Incoming condition signals en-
able/disable a transition by their values in addition
to the current marking. Incoming event signals force
transitions to �re if they are enabled by marking and
by condition signals. Hence, we get a modeling con-
cept that can represent enabling/disabling of transi-
tions by signals as well as enforcing transitions by sig-
nals. More than this, the concept provides a basis for
a compositional approach to build larger models from
smaller components. "Composition" is performed by
connecting inputs of one module with outputs of an-
other module. If the module is autonomous (it has no
inputs), such a system is called "Signal/Event net",
and it can be analyzed without any additional infor-
mation about its external environment. Such features
of SNS as event arcs and modular design closely cor-
respond to the design techniques as provided by IEC
1499. Thus we have an intuitively clear but formal way
to model a system. The modeling technique supports
a bottom-up modeling as well as top-down strategy.
Even after the composition, the state of the system is
distributed, and the original structure of the modules
is preserved. Hence, composition is far less compli-
cated as building the cross product of automata or the
interleaving language. This allows us to build e�cient
models of realistic scale.

3.2 Signal/Event nets

Signal/Event net is a place transition net de�ned as a
tuple N = [P; T; F; V;B;W; S;M;m0; � ] where:

1. P is a non-empty �nite set of places,

2. T is a non-empty �nite set of transitions, disjoint
with P ,

( ) ( ) (
relation, the set of ow arcs),

4. V is a mapping which attaches a positive integer
to every arc (the arc weight, V : F ! N),

5. B is a subset of P �T (the set of condition arcs),

6. W is a mapping which attaches a positive integer
to every condition arc (the condition arc weight,
W : B ! N),

7. S is a subset of T �T , the irreexive signal (ow)
relation,

8. M is a mappingwhich attaches a (signal-processing)
mode to every transition (M : T ! f ^ ; _ g),

9. m0 is a marking of P called the initial marking,
and, �nally,

10. � : T ! fObliged; Spontaneousg is a mapping
which assigns to each transition the type (actu-
ally this typing makes sense only for independent
transitions, i.e. those having no incoming event
arcs);

The sets P , T and F , and the mappings V and m0

are interpreted in the usual for Petri nets way.
If [p; t] is an element of B then we say that p is

a (or serves as) condition of t, i.e., in order to �re t
it is necessary that p is marked with at least W (p; t)
tokens.

We consider condition arcs [p; t] as relaying a piece-
wise constant signal which informs about the token
load of the place p, i.e. the state of p.

If a pair [t; t0] of transitions is an element of the
signal relation S, then we say that a signal arc leads
from t to t0, which means that �ring the transition t
sends a signal-event to the transition t0.

Signal-events reect the second type of signals needed
to connect the modules of a control device, the impulse
type. They are described by time functions which have
non-zero values only for isolated time points.

For any transition t the modeM (t) determines the
processing of the incoming signal-events. The default
mode accepted throughout this paper is _ . IfM (t) =

_ then to �re t it is necessary that at least one signal
arc which targets t leads a signal-event, i.e. 9ti 2 T :
[ti; t] 2 S and ti is just �ring. If, otherwise, M (t) = ^
then to �re t it is necessary that all signal arcs leading
to t relay a signal-event.

If a transition t has no incoming signal arcs, i.e.,
the set

St := ft0
�� [t0; t] 2 Sg

is empty, then the transition t is called independent,
otherwise forced. By Indep we denote the set of all
independent transitions of N , by Forc the set of all
forced transitions.

The transition type mapping � a�ects the rules un-
der which the transition are selected for �ring. It will
be explained in the following section.

3.3 Rules of transition

Given a marking m, we say that a transition t has
token-concession at m i� every (pre-)place p such that
[p; t] is in F holds at m at least as many tokens as the
weight V (p; t).

A transition t is said to be enabled at the marking m
i� t has token-concession, its conditions are satis�ed,
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are present.

SE -systems are executed in steps, which are the
sets of simultaneously �ring transitions. The �ring rule
says, that executable steps are formed by �rst picking
up a nonempty set of enabled independent transitions,
which includes at least one of enabled obliged transi-
tions, if any is present, and then adding as many as
possible of those transitions that are forced to �re by
signal-events produced by transitions in the step. This
implies that in every non-dead SE -net there exists an
independent transition.

If s is an executable step at m, then s may �re,
which leads to the new marking m0 := m � s� + s+.
This is abbreviated as m[sim0. The marking m com-
pletely determines state of the S/E net model, and an
executable step determines the state transition.

3.4 Timed Models

In this section we consider SE-nets under time con-
straints applied to the input arcs of transitions: to ev-
ery pre-arc [p; t] 2 F we attach an interval [eft; lft] of
natural numbers with 0 � eft � lft � !. Th interval
is also referred to as permeability interval. If a pre-arc
has no explicitly designated permeability interval it is
assumed to be [0; !].

The interpretation is as follows. Every place p bears
a clock which is running i� the place is marked and
switched o� otherwise. All running clocks run at the
same speed measuring the time the token status of its
place has not been changed, i.e. the clock on a marked
place p shows the age of the youngest token on p. If
a �ring transition t removes a token from the place
p or adds a token to p then the clock of p is turned
back to 0. A transition t is able to remove tokens
from its pre-places (i.e. to �re) only if for any pre-
place p of t the clock at place p shows a time u(p) such
that eft(p; t) � u(p) � lft(p; t). Hence, the �ring of
transitions is restricted by the clock positions.

Let N = [P; T; F; V;B;W; S;M; � ] be a SE-net, eft
a mapping from F \ (P � T ) to N0 and, lft a map-
ping from F \ (P � T ) to N0 [ f!g such that always
eft(p; t) � lft(p; t) holds. Then TN = [N; eft; lft] is
an arc-timed signal-event net.

A state of TN is given by a pair [m;u] where m
is a marking of P , and u is the P -vector of the clock
positions. We assume that a clock which is switched
o� shows the time 0, and, that the time-scale used is
integer. Therefore u is a marking too, and for any
(realizable) state it holds: if u(p) > 0 then m(p) > 0.

The initial state [m0; u0] of TN in general (but not
necessarily) consists of the initial marking of N and
the zero time vector.

Arc-timed signal-event nets are executed in steps
too. The execution of a step does not take time.

A step s of N is said to be enabled at the state
[m;u] of TN i� it is enabled in the non-timed sense
and for every pre-place p of a transition t 2 s it holds
eft(p; t) � u(p) � lft(p; t).

In timed models a speci�c type of obliged transi-
tions required to let time elapse when no transitions is
enabled by marking. This type is called synchronous.
A synchronous transition usually is presumed to have
no pre- or post places and one or more outgoing event
arcs.

An enabled step is formed from at least one of the
enabled obliged transitions, some of enabled sponta-
neous transitions, and all the transitions forced by the
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transitions are included in the step conditionally: if
the formed step contains no transitions forced by the
synchronous transition, then it is removed from the
step.

Note, that in the timed models, a step is not nec-
essarily non-empty. In the case if there are some en-
abled spontaneous transitions and no enabled obliged
transitions, or no enabled synchronous transitions were
included into the step, one of the possibly executable
steps is the empty step s = fg.

Obviously, a step s may be enabled at the marking
m in N , but not enabled at the state [m;u] of TN
because some clocks have not reached the earliest �ring
time eft or have passed already the latest �ring time
lft.

If there are no other enabled steps except for the
empty step, the state [m;u] of an arc-timed signal-
event net may change by elapsing of one time unit to
[m;u0] where

u0(p) :=

�
u(p) + 1; if m(p) > 0;
0; else.

If a state [m;u] of TN is such that no non-empty
step is enabled or can become enabled by elapsing of
(one or more) time units then this state is called dead.
Otherwise, the minimal number of time units after
which at least one step becomes enabled is called the
delay D(m;u) of the state [m;u]. Hence, the delay is
de�ned only for non-dead states.

For any place p we de�ne the clock stop position of
p as

csp(p) =

8>>><
>>>:

1 +maxflft(p; t) j t 2 pF ^ lft(p; t) 6= !g;
if this set is not empty,

maxfeft(p; t) j t 2 pFg;
else.

Consider two (reachable) states [m;u]; [m;u0] which
di�er only in the clock positions u, u0 in the following
way: If u(p) 6= u0(p) then u(p), u0(p) � csp(p). Then
both states are indistinguishable in the sense that the
same sequences of steps can be �red. Therefore, in our
implementation, we stop every clock at their clock stop
time, i.e. the clock position will not be increased by
elapsing a time unit, although the clock is "running".
In this way states of the above described kind will be
identi�ed.

3.5 TimedComputation Tree Logic with
state/event variables

Timed Computation Tree Logic (abr. TCTL) was in-
troduced in [8] as an extension of Computation Tree
Logic (abr. CTL) proposed in [3]. It allows to com-
bine the qualitative temporal assertions together with
real-time constraints, as intervals [l; h] with 0 � l �
h � ! attached to the modalities X, F and U .

If EX' is a formula of CTL then EX[l; h]' is a
formula of TCTL which is satis�ed by a state z if this
state has a successor z0 satisfying the formula ' and
such that the transition from z to z0 takes at least l
and at most h time units.

The interpretation of formulas from TCTL is done
on a structure (or model) � = [Z;); D] where

1. Z is a non-empty �nite set of states z,

2. )� Z � Z is the state transition relation,
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A CTL formula is built from state-formulas (i.e.
Boolean formula over state-related predicates) and tem-
poral operators (modalities). However, our application
needs require references to events (which are modeled
by the net transitions) along with references to states.
Transition-related predicates signal about whether a
certain (S/E net) transition is included in the step
which makes a state transition. For example, formula
t1 ^ t2 is true for the state transitions, de�ned by the
steps including both t1 and t2.

The state/event precedence relation is de�ned as
follows: First denote state/step precedence. If step s
is executable at state z and result of its execution is
state z0 then we denote this as z )s z0 and say that
step s is next to z and precedes z0.

Let z = [m;u] be a state, and Tr(z) is a set of
steps, executable at z (correspond to the arcs in the
reachability graph going out of the vertex correspond-
ing to the state z). We say that transition t is next
to the state z if it is included at least in one step of
Tr(z). Similarly, state z is next to the transition t i�
t is included to a step s: 9z0 : z )s z0.

The relations of following/precedence can be then
de�ned inductively. For example, state z follows tran-
sition t i� either z is next to t or there exist z0 next to
t such that z follows z0.

In our application here, � always will be the reach-
ability graph of an arc-timed signal-event system. For
any state z = [m;u] the number D(z) is the number
of time units which have to elapse at z before a non-
empty step can be executed.

A fullpath � in � is an in�nite sequence (zi; si); i 2
N0 of states and state transitions, starting in a state,
such that zi )si zi+1 holds for all i 2 N0. Transition
si may be empty.

For any fullpath � and every state z 2 Z we put

1. D(�; z) = 0, if z = z0 (i.e. if � starts at z0),

2. D(�; z) = D(z0)+D(z1)+: : :+D(zk�1), if z = zk
and z0; : : : ; zk�1 6= z.

With other words, D(�; z) is the number of time
units after which the state z on the fullpath � is reached
the �rst time, i.e. the minimal time distance from z0.
For a transition s : z )s z0 the number D(s) = D(z0).

Consider some examples of TCTL formulas using
transition-related expressions:

1. Transition t1 �res in the state z: z j= EXt1.

2. There exists state where transitions t1 and t2 �re
simultaneously and this state is always followed
by the state where marking in p1 is 1 within 5 to 7
time units: z0 j= EF ((t1^t2 ! EF [5; 7](m(p1) =
1))

3. Transition t1 is followed by transition t2 within
time interval [2; 3]: z0 j= AG(t1 ! EF [2; 3](t2));

4 Modeling of controllers and in-
terconnected systems

4.1 General considerations

We assume that implementation of the functionality
of the blocks as described by the standard is achieved
by the corresponding program modules, provided ei-
ther by operating system, or included in the code of
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tion block are modeled by SNS we keep in mind the
correspondence between SNS patterns and the algo-
rithmic patterns, which form the program modules. In
this context the formalism of SNS is used for modeling
of objects of di�erent nature: plants and control de-
vices. This requires to be careful with usage of some
of its features. For example, while model of plant often
bene�ts from the use of non-determinism (in conict
resolution), in the model of controller it would be inad-
equate. Spontaneous transitions are helpful to model
events in the plant, but not appropriate when the con-
troller is concerned. SNS allows simultaneous �ring of
several transitions, but a computing device cannot per-
form execution of several commands simultaneously.
We must make sure that simultaneous transitions cor-
respond either to the commands, executed in di�er-
ent resources or devices, or to the commands, whose
order of execution is really irrelevant. The following
examples show the principles of modeling. In general,
transitions are used to model commands, while places
model states, or values of variables.

4.2 Data storage and assignment

Boolean variable cell can be modeled by the net having
two places p0 and p1 and two transitions ts and tr
as shown in the Figure 4. Setting of the variable is
modeled by transition ts and resetting by tr.

p0

p1

ts tr

Set

TRUE

FALSE

Reset

Figure 4: Boolean variable cell.

4.3 Linear sequence of commands

Consider howmodeled the linear sequence of commands
SET X; RESET Y. In the model, presented in Figure
5, transitions t1; t2 which correspond to the commands
are forced by transition tsg which makes them to �re
as soon as they become enabled. Thus tsg models syn-
chronous nature of the computing device, where com-
mands are forced by the clock generator of impulses.
Transition tsg has to �re every time. In the timed
models, however time elapses only when no transition
is able to �re immediately. Therefore, to obtain the
required behavior, tsg has to �re only when any of the
transitions, forced by it, is enabled. That is why tsg
is made a synchronous transition. Model of every re-
source or device (in terms of IEC1499) has only one
synchronous transition, which forces thereby all the
commands within this resource/device.

4.4 Boolean operators

Since every Boolean variable is modeled by two places
(as was shown in Figure 4), we do not need a speci�c
model for getting negation of a Boolean variable. As
for AND, and OR operations, they can be modeled
as shown in Figures 6,7 correspondingly. Both models
have two incoming event signals: compute and reset.
Computation of the result takes one state transition.
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SET X

RESET Y

Figure 5: Model of linear sequence of two commands.

p0

p1

t1 t2 t3

reset

X YV

Y
TRUEX

compute

Figure 6: SNS model of logic OR.

4.5 Interconnected systems

In the example in Figure 8,a we have a non-timed
model, where the left module corresponds to the model
of plant, its transitions 1 and 2 are spontaneous. Places
1 and 2 model two states of the plant. The right mod-
ule corresponds to the controller, which registers the
event of transition from state 1 (p1) to the state 2 (p2) -
transition t3, then performs some computations - tran-
sition t4, and returns to the initial state. Transition t5
is obliged and serves to model the clock generator of the
controller. Thus, the �rst step in the given marking is
formed from the spontaneous t1, forced t3, and obliged
t5: S1 = ft1; t3; t5g. Second steps can be S2 = ft4; t5g
and S2 = ft2; t4; t5g. In the timed model in Figure 8,b
the arc (p1; t1) is marked with the time interval [1,3],
where 1 is the low time bound, and 3 is the high bound,
which means that t1 would �re only within [1,3] inter-
val. However, at normal �ring rules t1 would never �re
because t5 is always enabled and is included in every
step. For this purpose t5 is made synchronous, it is
included into the step only if t4 also would be included
(in this case, i� t4 is enabled). Thus we can get the
following sequence of steps: S1 = fg - time elapses by
1 unit, S2 = ft1; t3g, S3 = ft4; t5g, and so on.

p0

p1

t1 t2

reset

X & Y

Y
TRUEX

compute

Figure 7: SNS model of logic AND.

Transition Condition Operation
t1 invoke ECC set EI variables

con�rm input mapping
evaluate transitions

t2 no transition clears issue events
t3 a transition clears schedule algorithms
t4 algorithms complete clear EI variables

set EO variables
evaluate transitions

Table 1: Conditions and actions associated with tran-
sitions of the ECC operation state machine.

5 Modeling of a basic function
block

The standard provides certain hierarchy of program
structures, which implies the corresponding strategy of
modeling - we begin with the simplest basic functional
blocks, gradually extending the modeling framework to
the whole applications and systems. We concentrate
mostly on the execution control issues described by
the Execution Control Charts and by the structure of
event interconnections. Thus we pay little attention to
the modeling of the component algorithms as long as
they do not strongly concern the execution logic of the
block. Calls of the algorithms can be modeled by the
corresponding state or time delays when it is essential.

As for the data types de�ned in the standard, we
divide them to the four categories: event signals, which
are modeled mainly by event arcs of NCES; Boolean
variables which can be modeled by marking of a place
in the NCES model and by condition signals, which
relay the value of variable without a�ecting the token
ow of the net; time parameters, which are mapped
onto corresponding permeability intervals of some NCES
arcs, and other numerical data which are not precisely
modelled as far as it does not concern the logic of exe-
cution. Based on the analysis of the IEC1499 draft we
conclude that model of a basic function block should
include the following components:

� Event input state machine (EI-SM) implementa-
tion module (one for each event input);

� Event input variables storage (EIVS) models (one
for each event input);

� Model of EC operation state machine (ECO-SM);

� Module implementingECC (ECCmodel), includ-
ing the sub-modules implementing actions and
algorithms (optional);

� Model of the scheduling function, which serves in
the standard to implement the discipline of call
of algorithms. Since the draft of the standard
provides little information on the issue, so far we
accepted only the "immediate execution" mode;

� Event output variables (EOV) models (one for
each event output);

Details of each model can be found in [9, 11, 10].
Consider in particular the execution control of the block.
Operation of the Execution Control is described in
the IEC1499 by means of the state machine (EC SM)
shown in Figure 8,c with transitions and actions de-
�ned as in the Table 1.

Multiple actions, associated with arcs of the au-
tomaton, are interpreted as executed sequentially. Thus,
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Figure 8: a) Non-timed model of the interconnected system; b) Timed model of the interconnected system; c) Execution control
state machine.

actions associated with t1 are interpreted as follows:
1.Con�rm input(s) mapped; 2. Evaluate transitions.
First operation sends an event signal to the model of
corresponding state machine implementing the storage
element of the event input, and the second sends an
activation signal to the NCES model of the Execution
Control Chart. It is essential to ensure that the latter
signal is issued after the �rst operation has been com-
pleted, because value of the event input variable might
be required for evaluation of transitions in the model
of ECC.

invoke ECC

synchro signal

no transitions clear

a transition clears

algorithms completed

inputs mapped

issue output events

evaluate transitions

schedule algorithms

set EO

clear EI

Execution Control State Machine

p1

p4

p5

p2

p3

t6

t3

t1

t5t2

t4

Figure 9: SNS model of the execution control state machine.

Basic structure of ECO-SM model (Figure 9) is sim-
ilar to the original ECO SM (places p1,p3,p4 correspond
to the states S0,S1,S2). Marking in the place p1 (state
S0) means that the state machine is ready to process
event, which we call "ECC idle". Transitions t1; t2 and
t5 are forced by the synchro-signal, which is issued by
the resource in which the block is placed. Operation of
the ECO SM is started when the resource sets the ag
"Invoke ECC". We introduce also additional "transi-
tional" places p2 - which ensures that variable setting
is completed before the transition evaluation, and p5
- it ensures that new transition evaluation is done af-
ter the event variables used in the previously cleared
transition have been reset.

Literally, the standard provides the following de�-
nition of the last operation associated with transition
t4: "This operation consists of resetting to FALSE (0)
the values of all the EI variables used in evaluating the
transition conditions of the previously cleared transi-
tion."

In our opinion, this phrase is rather ambiguous,
since no de�nition is given what means "used in evalu-
ating the transition conditions of the previously cleared
transition". Logically, these are all the transitions from
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Figure 10: a)ECC which accepts sequence ei3,ei1 as ei1,ei3;
b)Corrected ECC.

the previously active state of the ECC. However, the
standard does not require the set of transitions to be
complete. In this case, if an event occurs, variable of
which is not included in any of the transition conditions
in a state S, it would not be cleared. Consider example.
Let function block has 3 event input variables: ei1, ei2,
ei3 and the execution control chart presented in Fig-
ure 10-a. Desired behavior of the block is to pass to
the state 3 at input sequence ei1,ei2 and to the state 4
at the sequence ei1,ei3. Implicitly the evaluation rules
imply that if ei3 occurs at the state 1, the ECC remains
to be in this state. However, the sequence ei3, ei1, ei2
might take the ECC in either of the states 3 or 4, in-
stead of state 3, as desired. This is due to the fact,
that ei3 will not be cleared if occurs at state 1, and
will remain TRUE in state 2, where it might �re the
transition to the state 4, after the event ei2 occurs, de-
pending on the sequence of condition evaluation. That
is de�ned in the standard as follows: "This operation
(t1-evaluate transitions) consists of evaluating the con-
ditions at all the EC transitions following the active EC
state and clearing the �rst EC transition (if any) for
which a TRUE condition is found. Software tools may
provide means for determining the order in which the
EC transitions following an active EC state are to be
evaluated."

To provide the required behavior, the correct ECC
must look like one in Figure 10-b. In this case ei3 will
be cleared if occurred at the state 1.

6 Modeling of resource

Resource is a functional unit contained within a de-
vice which has independent control of its operation,
and which provides various services to applications,
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including the scheduling and execution of algorithms.
The RESOURCE de�ned in IEC 1131-3 corresponds
to the resource de�ned above. A device contains one
or more resources. We model the following functions of
resource: processing of invocation requests, scheduling
and execution of algorithms, synchronizing the execu-
tion of blocks, and E RESTART block, which gen-
erates corresponding signals for the cold and warm
restart events. We understand that in such a way that
no requests should be lost in case if the execution con-
trol is unable to process the request immediately.

Sketch model of the resource containing two func-
tion blocks is given in Figure 11. Processing of invo-
cation requests is modeled by the SNS module which
sets a Boolean ag (token in the place p2) after at least
one ECC invocation request was generated by models
of event input variables of the blocks contained in the
resource. When the execution control becomes idle, it
uses this condition to start work again. Once process-
ing of the event is started by the execution control,
it issues the signal "Input mapped" to the models of
event inputs, as well as to the model of invocation pro-
cessing which �res transition t2 and returns token from
p2 to p1.

7 Conclusion and future work

Several new features of the SNS modeling formalism
have been discussed in the paper. Those have been
inspired by the needs of modeling and veri�cation of
IEC61499 applications. Some of them have been al-
ready implemented in the model-checking tools, such
as SESA net analyzer, or model generator and analyzer
VEDA. The others yet have to be implemented. Pre-
liminary analysis shows that the proposed formalism
provides more correct way of modeling compared to
the previously used ones, although extends the num-
ber of reachable states, especially in the timed models.
An e�ective way to cope with this problem, is to use
both non-timed and timed models for the same system.
While the former reveals most of the faults, related to
the sequencing of signals, and the dead states, the lat-
ter can be used only for some performance estimations.
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