Visual Verifier Suite

Guide to Examples

Cheng Pang

Valeriy Vyatkin

Block Design © 2007

© BlockDesign, 2007

Contents

Conventions

Standard Library Models

Model Name
Model Name
Model Name
Model Name
Model Name
Model Name

Model Name:
Model Name:
Model Name:
Model Name:
Model Name: E_
Model Name:
Model Name:
Model Name:
Model Name:
Model Name:
Model Name:
Model Name:
Model Name:
Model Name:
Model Name:
Model Name:
Model Name:

Model Name:

.. 3
a1 IV a1 =) =TT PPN 3
... 7

DB AND et b e b she e st eaeas 7
O S 0o 01V =Y o o PSPPSR 11
TE_DELAY ottt st st st sttt et et et et 13
D E_IMERGE ..ttt st st st st sttt et et e be e 15
Y = 1 TR 17
o S 2 11 =1] LTSRS 20
[To o o V1o YN =L B A PPN 22
E D _FF_ALG ettt ettt sttt ettt e b e e b 25
| 00e] 1 o] o1 | £ IO PP TP TPPPPTTPPIRN 28
E_DEMUX_ALG .coeviiiieieeieeieeteesite sttt sttt st st st sttt eenteenteesbeesbeesanenas 36
E_REND .ttt ettt b e b b s s s s 38
E_SWITCH_ALGttt ettt sttt sttt et e b e 41
INtErNal_BOOIEANviiieeei e 44
E_SELECT _ALG ..ttt ettt ettt ettt ettt sb e be s bbbt st sae e satesaeeea 47
TESWILCNEE <.t ettt e esbeeeneeeas 50
2 TeToY [T o T [T o TV PR 53
BN P et b e b b sae e s sane s 56
LT T o LU PRt 58
LT T o LU PPNt 61
MUINT _INPULES_Z oottt ettt sttt st sttt et et e b e e i 64
Y IS= Y0 07] L=T o SRR 68
B R _TRIG ittt sttt ettt ettt et e b e be e bt e sbe e sbeesaeesatesatesanesanesanes 71
E_R_TRIG ..ottt st st s st sttt e en e 73
Y= Y001 o (=SS 75

© BlockDesign, 2007

Introduction:

This document provides a guide to the NCES models in the standard library, including model
description, sample testing scenario, reachability graph analysis, and verification of each
model, typically using both safety and liveness properties. Moreover, some NCES features
are also explained in the Miscellaneous sections.

Conventions and Syntaxes:

module
boundary
Rl ~ Basic NCES Module

| __flow arc

place___| p1
tra nsitbh\ / event
\ | outputarc
>—/l/—' t1

event . / event
input €11 t2 =007 Gyt

condition ¢jf [}U ®

1co? condition

1

input output
p2
event
inputarc ..duition token \condftfon
input arc outpuf arc

Figure 1 Graphical Notation of a Basic NCES Module

Composite NCES Module with Different Condition Arc Weight

Basic Module A Basic Module B

(b)

Figure 2 Composition of Composite NCES Module: (a) Original Module, and (b) Flatten Module

© BlockDesign, 2007

Instance_kame

& eil eol

oo B2 2o g

] it col [

Oci2 co2 [
(a)

Figure 3 A Sample Basic NCES Module: (a) Module Interface, and (b) Module Content

e The module interface shows the port names and type information. The Instance
Name is yellow and the Type Name is green. In basic NCES mode, type name and
instance name are identical as shown in Figure 3 (a), whereas in composite NCES
mode, you can define your own instance name. In this guide, normal text is used for
Instance_Name and Bolded text is used for Type_Name.

e Event/condition input/output port (signal) name is in Italic, e.g. eil. If two signals
share the same name, append the instance name with a period (.) in front of the
signal name to differentiate, e.g. Instancel.eol and Instance2.eol, which are called
fully qualified name.

e The symbolic names of transition and place are blue whereas the ID’s of transition
and place are green if shown. You can only define your own symbolic name. Place
and transition are directly referred to their names when referring to place/transition
in flatten module or qualified with their instance name.

e Arcs are referred as [Source, Destination], e.g. the event input arc from eil to tl is
represented as [eil, t1] or Instancel.[eil, t1].

e The number 10 beside flow arc [p2, t2] is the weight of the arc. Weights can be
assigned to all kinds of arcs.

e The symbol [1; »] beside flow arc [p1, t1] indicates the time interval of this arc.

e Specifying token location and flow path:

© BlockDesign, 2007

Figure 4 Token Location and Flow Path

Usually basic NCES module contains multiple tokens, but token doesn’t possess any
ID. Therefore we concatenate prefix TK and the ID (in green colour) of the place
holding the token to specify the token, e.g. TKp1 stands for the token inside place p1
in the above diagram. The token ID can also be qualified.

Token flow path can be specified by using the following syntax:

pi = (pb1|tbl — pb2|tb2 — -+ - pbn|tbn) — pl

n

tl} (L) (1.1)

where:
pi — the initial place holding the token
pb1 — the first non-initial place leading a branch, e.g. p6 in above diagram
pbn —the n™ non-initial place leading a branch
tbn — the n™ branching transition, e.g. t8, t9
pl — the last place in the flow path, e.g. p7
tl — the last transition in the flow path, e.g. t4
L —indicates the specified flow path is a loop
() — means the content inside it is optional
| - means ‘OR’
For example:
{p1 — p3} specifies the flow path p1 - t1 - p2 - t2 - p3
{p1 — t4}L specifies the flow path p1 - t3 - p4 — t4 - p1 which is a loop
{p5 — p6 — p8} specifies the flow path p5 =» t5 —» p6 — t7 — p8
e |nput Sequence: the sequence of inputs, including both event and condition input
signals, is specified in the following syntax:

Input signals for S1; ---; Input signals for Sn; (L) (1.2)

n

where:

© BlockDesign, 2007

Input signals — any event/condition signals. N.B. a condition signal is

included only if it is true in the state.

Sn —the n™ state

L — indicates whether this input sequence is cyclical
For example, {eil, ei2, cil; ci3; eil|ei2, ci2}L defines the following cyclical input
sequence:

S1: eil, ei2, cil

S2:ci3

S3: eil orei2, ci2

S1:eil, ei2, cil

© BlockDesign, 2007

Standard Library Models

Model Name: E AND

Model Descriptions:

Perform AND operation on the two event input signals. Event output signal eol will be
issued upon the occurrence of both event signal eil and ei2.

Model Details:

P

11
il

8i2 O/\(>0 ?ml

(a) (b)

Figure 5 E_AND.xml

Simple Testing Scenario:

E_AMND

Figure 6 TEST_E_AND_S1.xml

E_ARD_S1
enl
eol

(a)

© BlockDesign, 2007

Figure 7 E_AND_S1.xml
The E_AND_S1 model generates the following input sequence:

{E_AND_S1.e01,E_AND_S1.e02; E_AND_S1.e0l|E_AND_S1.eo02}L

ViVe Reachability Graph:
[All testing scenarios use Maximal Firing rule and other settings remain default]

Note: ViVe assembles the individual model instances into a single NCES module, which is
called flattening, and reorders and re-labels the places and transitions. Therefore, the
reachability graph is generated based on the flattened module. Please refer to the assembled
module when reading the ViVe Reachability Graph and Model Verification sections, unless

the names are fully qualified.

(T} Visual Verifier v. 0.12

(D E0E 0.
File Assemble Analyze Options About
=] TEST_E_AMD_S1.aml e
{J E_AND EJ Geo = v -2 - t|jﬁJ <[12]21] 1] 2
0 EanD 51 Model RG |Edior | Check| slal | B
+ | .
2
1

@

Transition steps from state 1
{4.2.3.1)»Gtate 2

B
B

2

[*ML l Errars [State/Time

g
S
wl

rS
«

Creating araphics to reachabiity araph arcs: 100% ready.

Figure 8 Screenshot of ViVe where 1 RG tab displaying the reachability graph; 2 Tree View listing all models
used inside current module; 3 Selected State window showing the selected state in the reachability graph and
its succeeding states; 4 Trace Toolbar where value in the text box indicates the first state number of the trace,
value in the middle combo box indicates the intermediate state numbers, and value in the last combo box
indicates the last state number; 5 State-Time Diagram visualises the state transactions in the selected path

© BlockDesign, 2007

Figure 9 (a) Snapshot of ViVe RG Tab (b) Snapshot of ViVe Select State Window
(c) Combined Reachability Graph

Note: The current version of ViVe has some limitations in displaying the reachability graph in
the RG tab and the enabled transitions in the Model tab. For the RG tab, when the
destination states of multiple transition steps are identical, the RG tab will only display one
transition step as shown in Figure 9 (a). Figure 9 (b) shows that there are two transition steps
from S2 to S1: Transition Step {6, 3, 1} and {5, 2, 1}. However, the RG tab only displays one
transition step. Moreover, since there is no intermediate state it is impossible to select the
other transition step by using the Trace Toolbar. The workaround for this is to select the
source state, e.g. S2, and examine all possible transition steps in the Selected State window.
In this guide the ViVe reachability graphs are manually processed to include all transition
steps as illustrated in Figure 9 (c) for your convenience.

£i]
File Assemble Analyze Options About
= 0] TEST_E_AMD_S1.ml
0 EanD 51 Model RG |Edior | Check| slal | B
o

-
=N

Transition steps from state 1
{4.2.3.1)»Gtate 2

[Errers [State/Time

L
e

N : &

[
=

Creating araphics to reachability araph arcs: 100% ready.

Figure 10 Limitation of the ViVe Model Tab

© BlockDesign, 2007

Normally the Model tab of ViVe highlights the enabled transitions in current state. However,
if the states in the reachability graph form a loop and the last state is selected, the Model tab
will not highlight the enabled transitions. For example, Figure 10 shows the Model tab
displaying the content of model E_AND_S1 in State S2. In according to the Figure 9 (a), t6 is
enabled and must be highlight in the Model tab. The workaround for this limitation is also to
refer to the Selected State window and set the steps in the Trace Toolbar.

Model E_AND is designed to model Boolean AND operation, therefore t1 will only be
enabled when both E_AND_Sl.eol and E_AND_Sl.eo2 present simultaneously. This
behaviour is verified in according to the reachability graph shown in Figure 9 (c).

Model Verification:

Note: Sometimes it is impossible to manually examine the entire reachability graph;
therefore it is easier and better to use model checking facility come with ViVe to verify the
designed system’s specifications.

Properties to be checked:

1. Transition E_AND_S1.t5 is only enabled when event signal E_AND_Sl.eol and
E_AND_S1.eo2 present simultaneously.

CTL formulae: [All CTL formulae are represented in the SESA syntax]
EXE (((t3 AND NOT t2) OR (t2 AND NOT t3))AND tl) Xm(pl) =1

Note: This model is trivial and can be directly verified by physically examining the
reachability graph. Moreover, due to the special case of p1, which always holds a token,
the eCTL formula is more emphasis on the transition steps. Therefore, the sample eCTL
formula is demonstrative and not generic.

Miscellaneous:

Conflicts and non-determinism in NCES: as shown in Figure 7, when TKp3 flows to p4 both t4
and t5 will be enabled simultaneously, as a result TKp4 can flow back to p3 either via t4 or t5.
This ambiguous or non-deterministic token flow situation is called conflict in NCES. ViVe
handles conflicts by including combinations of all possible flow paths in the reachability
graph. This feature facilitates the design of testing scenarios by reducing the number of
place and token required to generate all possible combinations of event/condition signals.

10

© BlockDesign, 2007

Model Name: C_E_Convertor
Model Description:

The C_E_Convertor model converts condition signal to event signal. Upon the occurrence of
event input signal eil, if the condition input signal cil is enabled, the event output signal eol
will be issued; otherwise no event output signal will be generated.

Note: E_Permit_ALG, E_Trigger are functionally identical to C_E_Convertor .

Model Details:

C_E_Converor

o el enl ko
] cil

a0l

(a) (b)

Figure 11 C_E_Convertor.xml

Simple Testing Scenario:

C_E_Convertor_51 C_E_Convertor

Figure 12 TEST_C_E_Convertor_S1.xml

P
—
3

L]

t1 i :
P4 col
- o]
p2
C_E_Convertar_S1
L 4
’A‘V"E t3 t4

el k> _|___|t2

cal [

(a) (b)

11

© BlockDesign, 2007

Figure 13 C_E_Convertor_S1.xml

The C_E_Convertor_S1 model generates the following input sequence:
{E_Convertor_S1.eol; E_Convertor_S1.eol, E_Convertor_S1.col1}L

ViVe Reachability Graph:

Figure 14 RG of TEST_C_E_Convertor_S1

Model Verification:

Properties to be checked:

1. Transition C_E_Convertor.t1 is only enabled when C_E_Convertor.cil is enabled and
C_E_Convertor.eil presents.

CTL formulae:

1. EXE (t6)Xm(p3) =1
This formula specifies in S2 C_E_Convertor.cil is enabled and C_E_Convertor.t6 will
fire in the following transition step.

Miscellaneous:

12

© BlockDesign, 2007

Model Name: E_ DELAY

Model Descriptions

Models a delay of 100 time units. When event input signal START arrives after 100 time unit
delay, the event output signal eol will be issued. Moreover, when STOP arrives the timing
will be interrupted and the model will be reset.

Model Details:
[l
—
E_DELAY START s t
24 START eol i -
100, 20]
I:I t3 A eol
(a) (b)

Figure 15 E_DELAY.xml

Simple Testing Scenario:

start
stop

Figure 16 TEST_E_DELAY_S1.xml

E_DELAY

S START eol |0
& STOP

1N |
—

start

start
stop

stop

(a)

Figure 17 E_DELAY_S1.xml

13

© BlockDesign, 2007

ViVe Reachability Graph:

&1

Figure 18 RG of TEST_E_DELAY_S1

Model Verification:

Properties to be checked:

CTL formulae:

Miscellaneous:

When use this model attention should be paid to the timed flow arc [p2, t3] and other time
flow arc in the entire module to avoid dead lock.

14

© BlockDesign, 2007

Model Name: E_ MERGE

Model Descriptions:

Merging two event input signals. Whenever eil or ei2 occurs, E_MERGE will issue event
output signal eol.

Note: E_OR2, E_OR3, E_OR4, E_OR7, E_DEMUX_OR, etc have the same structure as
E_MERGE but with different number of event inputs.

Model Details:
Pl

E_MERGE il

24 2l
£ Bid

o g0l

(a) (b)

Figure 19 E_MERGE.xml

Simple Testing Scenario:

E_MERGE

Figure 20 TEST_E_MERGE_S1.xml

15

© BlockDesign, 2007

4
—

? Pl
M v 4
- aol
P2 ~ J"xv,_p.o
L+
enl / ps
en’ 1
p3 M, v t5
’___‘.\Nr"'f-
o A go2
Kl O

B

(a) (b)

(o]

Figure 21 E_MERGE_S1.xml

The E_MERGE_S1 model generates the following input sequence:
{E_Convertor_S1.eo01; E_Convertor_S1.eol, E_Convertor_S1.col}L

ViVe Reachability Graph:

/6)

Figure 22 RG of TEST_E_MERGE_S1

Model Verification:

Properties to be checked:

1. E_MERGE.t1

CTL formulae:

16

© BlockDesign, 2007

Miscellaneous:

Model Name: E_SPLIT

Model Descriptions:
Splitting one event input signal to two sequential event output signals.

Model Details:

E_SFLIT
E_SPLIT

El

(a)

Figure 23 E_SPLIT.xml

Simple Testing Scenario:

E_SPLIT

E_SPLIT_S1

2i1 eol h,
e

Figure 24 TEST_E_SPLIT_S1.xml

17

© BlockDesign, 2007

l
20

t eol

—O
Q—ﬂ‘f 12
P3
eil enl

Bi2 13 C?‘nj
eil

(a) (b)

Figure 25 E_SPLIT_S1.xml

ViVe Reachability Graph:

Figure 26 RG of TEST_E_SPLIT_S1

Model Verification:

Properties to be checked:

18

© BlockDesign, 2007

CTL formulae:

Miscellaneous:

19

© BlockDesign, 2007

Model Name: E_Bistable

Model Descriptions:

A bistable used to represent one of two possible states. E_Bistable can be set or reset
according to the input signal and issues an event output signal Update to inform other
connected modules.

Model Details:

Set
il .
>
15 #
16
h ! hY [
False
o0
‘\\‘m
E_Bistahle . TI p2
E_BRistahle p2
True
<1 Set Update ¢ o] N
\ 11 r -
< Reset NP R 0
Falze [] 2 3
|
Reset
s <@ !
) o v |2
pd
P4

(2) (b)
Figure 27 E_Bistable.xml

Simple Testing Scenario:

E_Bistahle
E_Bistable_51 E_Bistahle
Updated Set \—) Set Update i
Feset \ — (| Reset
False [
True]

Figure 28 TEST_E_Bistable_S1.xml

20

© BlockDesign, 2007

Pl
Set
1~ e
P2
pdated Set
Reszet

2 A Reset

pdated ¢

(a) (b)

Figure 29 E_Bistable_S1.xml

ViVe Reachability Graph:

Figure 30 RG of TEST_E_Bistable_S1.xml

Model Verification:

Properties to be checked:

CTL formulae:

Initially the bistable is in the False state, i.e. p1 holds a token, then the bistable is set to the
True state. When the event input signal Reset arrives, the bistable is reset to the default
state again.

Miscellaneous:

21

© BlockDesign, 2007

Model Name: Domin_EI1_ALG

Model Descriptions:

The Domin_EI1_ALG introduces a priority mechanism to NCES. Event output signal E/1_Out
is responsible to event input signal E/1, whereas EI1_Out is responsible to E/2. When both
El1 and EI2 present simultaneously, only E/1_Out is issued.

Model Details:

El El1_Out

ElZ_Out
A o

Ell El1_out
El2 El2_out

(a)
Figure 31 Domin_EI1_ALG.xml

Simple Testing Scenario:

Domin_EIN_ALG_S

ol Ky EN EM_Out
202 [El2 ElZ2_Cut

Figure 32 TEST_Domin_EI1_ALG_S1.xml

22

© BlockDesign, 2007

enl

Domin_EN _ALG_S1

eol ko
20k

i
A

(a) (b)
Figure 33 Domin_EI1_ALG_S1.xml

ViVe Reachability Graph:

23

© BlockDesign, 2007

Figure 34 RG of TEST_Domin_EI1_ALG_S1

The testing scenario module Domin_EI1_ALG_S1 cyclically generates the event sequence:
eol->e02->[eol and eo2]. When both event signal eol and eo2 are sent to Domin_EI1_ALG,
only E/1_Out is issued (indicated in S6). The reachability graph also shows a state loop, S3-
>54->55->56->53.

Model Verification:

Properties to be checked:

CTL formulae:

Miscellaneous:

The flow arc [p2, t2] and [p3, t3] are timed, which fire only when no more transition is
enabled in the entire module (in this case the module containing Domin_EI1_ALG_S1 and
Domin_EI1_ALG). Timed flow arcs are extremely useful to detect the completeness of

certain operations.

24

© BlockDesign, 2007

Model Name: E_ D FF _ALG

Model Descriptions:

This model models the D Flip Flop. Based on the condition input signals, E_D_FF_ALG adjusts
its internal bistable and issues the corresponding event output signal EO and condition
output signals.

Model Details:

MNOT_Q

=
r
-
—
o

16
EQ

(a) (b)
Figure 35 E_D_FF_ALG.xml

Simple Testing Scenario:

I

L E_D_FF_ALG_51 E_D_FF_ALG

L eil eol ——m —pf CLK EC i
—a | T False [}——a[|D o

T F True [—— o MOT_D MOT_Q O

Figure 36 TEST_E_D_FF_ALG_S1.xml

25

© BlockDesign, 2007

[
eol
11 v
False
True
[
2i1 enl b3
T Falze |_.
F True T -
3
F
. f
2i1
o |
(a) (b)

Figure 37 E_D_FF_ALG_S1.xml

ViVe Reachability Graph:

Figure 38 RG of TEST_E_D_FF_ALG_S1

pl and t1 form a timer issuing event output signal eol. The two bistables inside
E_DFF_ALG_S1and E_D_FF_ALG are interconnected and update each other.

Model Verification:

26

© BlockDesign, 2007

Properties to be checked:

CTL formulae:

Miscellaneous:

27

© BlockDesign, 2007

Model Name: E_Compare
Model Descriptions:

Based on the event input signal, E_Compare issues the corresponding conditon output signal

and the Sampled event output signal. The following state diagram illustrates the state
transition relationship.

Equal (p1)

Equal_In / \ Equal_In

Greater_In Less In

/ \

——————1 &8ss In————»
Greater (p2) - Less (p3)
+— Greater In——

Figure 39 State Diagram of E_Compare

Model Details:

Greater_In
eil
Equal
Greater
ol
E_Compare
E_Compare Equal_!r?
ei2
Greater_In Sampled
Equal_In . »
Less_In e
Greater [
Equal]
Less O
Less_In
@
Sampled
eal
(@) ®

Figure 40 E_Compare.xml

Simple Testing Scenario:

28

© BlockDesign, 2007

571

E_Compare_!
E Compare_51 E Compare

E_Compare

Sampled Greater_Out o_my,_p{) Greater_In Sampled
Equal_Out Q_ﬁxrpg Equal_ln
Less_Out o_ﬁxrpo Less_In

Greater [
Equal [
Less []

Figure 41 TEST_E_Compare_S1.xml

Sampled
il

E_Compare_51
E_Compare_51

x Greater_Out

o Sampled Greater_out k7
Equal_Out k>
Less_Out k>

o quaI_Out

Less_Out
\ —»O -

(a)
Figure 42 E_Compare_S1.xml

ViVe Reachability Graph:

© BlockDesign, 2007

Figure 43 RG of TEST_E_Compare_S1.xml

Model Verification:

Properties to be checked:

CTL formulae:

30

© BlockDesign, 2007

Miscellaneous:

Model Name: E_Compare_|
Model Descriptions:

An enhanced version of E_Compare which introduces an extra state /nitial and an event
input signal Reset to reset the model back to its initial state as shown below:

Equal (p2)
Equal_In Equal_In
Greater_|n Equal_In Less In
Eelﬁet
Greater (p3) ‘_G'E'::i_:_' Initial (p1) || """ Less (p4)

Figure 44 State Diagram of E_Compare_|

Model Details:

ela

P
I
t

Greater_In Greater
gil col
itz |
v {12
Less
Reset Initial
ei2 -
A
Equal_In
ei2
Equal
> t7 = -~ l ps o co?
\I:EI g 4@ &
v 19 o
A 113
v LY 43
Less_In
. G
4
14

1 Sampled
i v =Tah|

Figure 45 E_Compare_l.xml

31

© BlockDesign, 2007

Simple Testing Scenario:

E_Compare_|_51
Sampled Greater
Equal
Less
Reszet

Q—ﬂ‘v—b‘@
Q—’h‘g—h‘o
Q—ﬂ‘g—.‘@
Q—ﬂ‘g—b‘{)

E_Compare_|
Greater_In Sampled
Equal_In
Less_In
Feset

Greater
Equal
Less
Initial

Figure 46 TEST_E_Compare_I_S1.xml

32

© BlockDesign, 2007

Sampled

E_Compare |51

E_Coaompare_|_51
Sampled Greater
Equal
Less
Reset
(a)

Figure 47 E_Compare_|l_S1.xml

ViVe Reachability Graph:

Greater
A — e
g0l
bo
bo o
e
pa
18 Reset
3] oY end
(b)

© BlockDesign, 2007

Figure 48 RG of TEST_E_Compare_|_S1

Model Verification:

34

© BlockDesign, 2007

Properties to be checked:

CTL formulae:

Miscellaneous:

35

© BlockDesign, 2007

Model Name: E DEMUX ALG

Model Descriptions:

A demultiplexer issues event output signal in according to the condition input signal and is
triggered by the event input signal EI.

Model Details:

El 1
LT 1
E_DEMUX_ALG el !
E_DEMLI_ALG
p2
El eol
pe
eol ¢ eod
M)
enl 2 » AT
e03
eol F \ »o eod
eod —14 A eol
] Four Four 7 A '
ci 1
G e . [o
] Two Three O -
£i2 enl
0 one Two g 35 T ot
] Zeto i O 2ol
One
e O
Zero
cif D
(a) (b)

Figure 49 E_DEMUX_ALG.xml

Simple Testing Scenario:

E_DEMUX_ALG_S1 E_DEMUX_ALG
E_DEMLX_ALG_S1 E_DEMUX_ALG
2il g0l —"\,—py El g0l
el ol
Zero 2ol [
Four BO3 (O
eod i
Four
< O] Three
] Two
O 9ne
Zero

Figure 50 TEST_E_DEMUX_ALG_S1.xml

36

© BlockDesign, 2007

n3
i ZEID
p i3 pa
il g
%1]
¥ Il
W pd
E_DEMU®_ALG 51 a4 N - — v HE
O.-—"
P2 o~/
gill g0 A 7 / 2ol
eid i
12 -
zero L l___|_ py Four
Four] 7 o]
-'Jll.l
5
-
<
(a) (b)

ViVe Reachability Graph:

Model Verification:

Properties to be checked:

CTL formulae:

Miscellaneous:

Figure 51 E_DEMUX_ALG_S1.xml

37

© BlockDesign, 2007

Model Name: E_REND

Model Descriptions:
Rendezvous of two event input signals.

Model Details:

E_REMD

(a)

(b)

Figure 52 E_REND.xml

Simple Testing Scenario:

E_REMD_S1
E_REMD_S1
2i1 2ol
eo?
R

E_REND

E_REMD
o — e il g0l
" — O il
—" R

Figure 53 TEST_E_REND_S1.xml

38

eol
el

© BlockDesign, 2007

E_REMD_S51
E_REMD_S1
eil enl
en?
F
2i1
2i1
(a)

Figure 54 E_REND_S1.xml

ViVe Reachability Graph:

39

© BlockDesign, 2007

Model Verification:

Properties to be checked:

CTL formulae:

Miscellaneous:

Figure 55 RG of TEST_E_REND_S1

40

© BlockDesign, 2007

Model Name: E SWITCH _ALG

Model Descriptions:

Based on the condition input signal, the switcher issues one of two possible event output
signals.

Model Details:

G
cil
MOT_G
ci2
2i1
i1 ©
E_SWITCH_ALG
E_SWiTCH_ALG
ail a0l
en?
Os
CIMOT_G
(a)

Figure 56 E_SWITCH_ALG.xml

Simple Testing Scenario:

E_SWITCH_ALG_51 E_SWITCH_ALG

g2 e K

NOT_G [J— e[| NOT_G

|
| E_SWITCH_ALG S1 E_SWITCH_ALG

i1 g0l g —pdf Bl eol g
|

Figure 57 TEST_E_SWITCH_ALG_S1.xml

41

© BlockDesign, 2007

E_SWITCH_ALG_51
E_SWITCH_ALG_S1

Figure 58 E_SWITCH_ALG_S1.xml

ViVe Reachability Graph:

Figure 59 RG of TEST_E_SWITCH_ALG_S1

Model Verification:

Properties to be checked:

42

© BlockDesign, 2007

CTL formulae:

Miscellaneous:

43

© BlockDesign, 2007

Model Name: Internal Boolean
Model Descriptions:

This model models an internal Boolean variable whose value can be set or reset by the event
input signals.

Model Details:

Set
eil

Internal_Boolean
Internal_Boolean

Set LUpdated
Reszet

True [Reset t3
R

False 2ls

pdated

(a) (b)

Figure 60 Internal_Bollean.xml

Simple Testing Scenario:

Internal_Boolean_51 Internal_Boolean
L Internal_Ballean_51 Internal_Boolean
Lpdated Set Q—‘“xf—h'{:) Set pdated
Reset [o—" —pg{ Reset
TRLUE True

T FALSE False :‘

Figure 61 .xml

44

© BlockDesign, 2007

Updated

e |

£ Updated Set
Reset i~
[] TRUE
[] FALSE
(& (b)

Figure 62 Internal_Boolean_S1.xml

ViVe Reachability Graph:

Figure 63 RG of TEST_Internal_Boolean_S1

Model Verification:

45

© BlockDesign, 2007

Properties to be checked:

CTL formulae:

Miscellaneous:

46

© BlockDesign, 2007

Model Name: E_SELECT_ALG

Model Descriptions:

E_SELECT_ALG models a selection between two events. The state diagram of E_SELECT_ALG
is illustrated below:

State 3 (p4)

G NOT G
1
L NOT G—p ——MNOT G——n
State 1 (p2)) . Start (p1) 0 State 2 (p3)
Figure 64 State Diagram of E_SELECT_ALG
Model Details:

E SELECT ALG
E_SELECT ALG

eil el
BiZ

Os

O MOT_G

2ol
2ol

(a)

Figure 65 E_SELECT_ALG.xml

Simple Testing Scenario:

47

© BlockDesign, 2007

E_SELECT ALG_S1

E_SELECT_ALG

g0l ", &il gol |
B0l o—=", gi2
G[1——m®[|GC
MOT_G }—@[|NOT_G

Figure 66 TEST_E_SELECT_ALG_S1.xml

1 eol

E_SELECT ALG_S1

enl
en?

G0 p3 p5 NOT_G
NOT_G [C

(a) (b)

Figure 67 E_SELECT_ALG_S1.xml

ViVe Reachability Graph:

Event output signal eol is issued when eil arrives and Not_G is true or when ei2 arrives and
G is true.

© BlockDesign, 2007

Model Verification:

Properties to be checked:

CTL formulae:

Miscellaneous:

84

Figure 68 RG of TEST_E_SELECT_ALG_S1

49

© BlockDesign, 2007

Model Name: TFSwitcher

Model Descriptions:

TFSwitcher updates its internal bistable according to the condition input signals.

Model Details:
pdate
2i1 False_0O
True
cil a
. True_0O
TF Switcher o1
TF Switcher
Falze
Update Updated ci2
O True True_0] p3
[]False False_O] _"C?I
S E3
pd
P4
t4 Lpdated
—__H—\—»0 "
(a) (b)

Figure 69 TFSwitcher.xml

Simple Testing Scenario:

TFSwitcher_5S1

TFSwitcher

L TFSwitcher_S1 TF Switche!

Updated Update f—"™ ey Update Updated g
TRUE T —=] True True_0
FALSE F[1—=e{|False False_0]

Figure 70 TEST_TFSwitcher_S1.xml

50

© BlockDesign, 2007

Updated
<

TRUE

FALSE

TFSwitcher 51

p2 r
o3 | |
£ Updated Update >

(a)
Figure 71 TWSwitcher_S1.xml

ViVe Reachability Graph:

Figure 72 RG of TEST_TFSwitcher

Model Verification:

Properties to be checked:

51

© BlockDesign, 2007

CTL formulae:

Miscellaneous:

52

© BlockDesign, 2007

Model Name: Boolean_Input

Model Descriptions:

Modelling of Boolean Input.

Note: Boolean_Input and Boolean_Output are identical except the model type name.

Model Details:

Sample
Sample Sampled
True True_Cut
False False_Cut

True

False

(a)

Simple Testing Scenario:

False_Out
True_0Out
3
A 13
p 02
L] ra
—»
pd
L il
— K
_.[t4
Sampled

®)

Figure 73 Boolean_Input.xml

Boolean_Input_51

l} Sampled

TRLUE
FALSE

Boolean_Input

Sample " {f Sample Sampled
T ——o@{] True True_0Out
F [——e(]False False_Out 7

Figure 74 TEST_Boolean_Input_S1.xml

53

© BlockDesign, 2007

Sampled

eit © | |

Figure 75 Boolean_Input_S1.xml

ViVe Reachability Graph:

Figure 76 RG of TEST_Boolean_Input_S1

Model Verification:

Properties to be checked:

54

© BlockDesign, 2007

CTL formulae:

Miscellaneous:

55

© BlockDesign, 2007

Model Name: BNP

Model Descriptions:
Modelling not present state of token inside a place.

Model Details:

E_EBistahle

Domin_EN _ALG E Bistable

Domin_ENM _ALG
Sampla . Set Update &

Bool_InpLit) Reset
cil

Sampled
en’

Figure 77 BNP.xml

Simple Testing Scenario:

ErMP_S1 EmrF

Sampled Sample Sample Sampled

P Boolean_Output Bool_Input MP

Figure 78 TEST_BNP_S1.xml

Boolean_Output

& Sampled Sample &

Sampled
gil

Figure 79 BNP_S1.xml

ViVe Reachability Graph:

56

© BlockDesign, 2007

Figure 80 RG of TEST_BNP_S1

Model Verification:

Properties to be checked:

CTL formulae:

Miscellaneous:

57

© BlockDesign, 2007

Model Name: Uint_Input

Model Descriptions:

Uint_Input models an Unsigned Integer Input without the value of zero.

Model Details:

Sample

UINT_G

UINT_E

E_TrigaerL

eol

Simple Testing Scenario:

[E_IL

Jampare_|

El2_0Out | LA e Greater_In Sampled
M~ Equal_in
"\\,_p-o Less_In
O Reset
Greater
Equal
Less
Initial

A Sampled

Greater

j/ﬂ

Equal
[t—->

]\q:‘ Less
1

Figure 81 Uint_Input.xml

Lint_Input_51

l} Sampled

Greater_In

Sample
Greater
Equal
Less

Llint_Input

-:}—n"x\,—p:} Sample
(— o | JINT_G
— o[| UJINT_E
1— & |UINT_L

Sampled
Greater

Equal [
Less [

Figure 82 TEST_Uint_Input_S1.xml

58

© BlockDesign, 2007

Lint_Input_51
Lint_Input_51

Sampled Sample
O Greater_In - Greater]

Equal 1 sampled
Less [eil

Sample
I:ITI ¥ g0l

Greater
=N

10 Equal

Greater_In
cil

Less
(@) (b) a

Figure 83 Uint_Input_S1.xml

ViVe Reachability Graph:

59

© BlockDesign, 2007

Figure 84 RG of TEST_Uint_Input_S1

Uint_Input_S1.p1 adjusts its token number according to the feedback signal
Uint_Input_S1.Greater_In connected to Uint_Input.Greater.

Model Verification:

Properties to be checked:

CTL formulae:

Miscellaneous:

60

© BlockDesign, 2007

Model Name: Uint_Input_Z

Model Descriptions:

Modelling of Unsigned Integer Input with zero.

Model Details:

eol

E_TriggerE

Sample
-, il
UINT_G -~)
—a] cil
_"A\ i
UINT_E -~)
—o(|
UINT_L

E_TriggerL

eol

EI2_0Out |

E_AMND

eol

=\

A\

< EN

Simple Testing Scenario:

Figure 85 Uint_Input_Z.xml

>
A

ENM_Out &

El2_0Out &

Greater_In Sampled
Equal_In
Less_In
Reset
Greater
Equal
Less
Initial

Sampled
oAb >

Greater

:‘jﬁ Equal

Less

j\q:‘ Zero

Uint_Input_Z_5 Uint_Input_Z J
Sampled Sample —" —pf Sample Sampled
Zero_In Greater [}———— | MINT_G Greater [

Equal [— e[| VINT_E Equal O
Less [}— o | MIMT_L Less [
Zero :‘

Figure 86 TEST_Uint_Input_Z_S1

61

© BlockDesign, 2007

Uint_Input_Z_51
Lint_Input_Z_S1
Sampled gample
i "ol Sample
Equal [] s
Less [0
Greater
Equal
Less
(a)

Figure 87 Uint_Input_Z_S1.xml

ViVe Reachability Graph:

62

© BlockDesign, 2007

Figure 88 RG of TEST_Uint_Input_Z_S1

Model Verification:

Properties to be checked:

CTL formulae:

Miscellaneous:

63

© BlockDesign, 2007

Model Name: MUINT _Inputs_Z

Model Descriptions:
Modelling of multiple UINT inputs with zero.

Model Details:

Sample Uint_Input3

7 -HAO Sample Sampled GreaterThanFour_0O

O_

0o o |UINT_G Greater [— —a]
-
|

| UINT_E Equal _
Three ___—— | acjun Less T e 0

MUINT_Inputs_Z Uint_Input2
Sample Sampled LA ey Sample Sampled
[Four GreaterThanFour_O [T o[UINT_G Greater
] Three Three_0 [o] UINT_E Equal
[Two Two_0 [One o] UINT_L Less
] <ne One_0
Zero_0 [
Lint_Inputl
LA e Sample Sampled
L e[UINT_G Greater
e UINT_E Equal
CJUINT_L Less
Zerg
(a) b

Figure 89 MUINT_Inputs_Z.xml

Simple Testing Scenario:

MUINT _Inputs_Z 51 MUINT_Inputs_Z

|
|>
l} Sampled Sample >—" —pQ Sample Sampled
——a | GFour_In Four (—— e Four GreaterThanFour_0 —
—a | Three_In Three [1— @] Three Three_O [F—
Two_ln Two [1—— | Two Two_0O
One_In One [—— | One One_0
T Zero_In Zero_0 :‘

Figure 90 TEST_MUINT _Inputs_Z_S1.xml

64

© BlockDesign, 2007

MIMT _Inputs_£ 51
MUIMT _Inputs_Z_ 51
Sampled Sample
[GFaur_In Four]
] Three_In Three [
] Twia_In Twa []
] One_ln One [
[Zera_ln
(@

ViVe Reachability Graph:

GFour_In

Zero_n
cid

Sampled
eil

Figure 91 MUINT _Inputs_Z_S1.xml

65

© BlockDesign, 2007

& , =
L on o A\ =4 " =4 g
i =] @* s) < B <, Bl <
s }) 2 i — i —
] i :] i i : o :
e] o s ~ = ! t
] I - ‘o, 5 = = 5 =)] = oo S
r “ " W (=% =+ " on o 1 (=% oy)
o, = 5 =] 5 b o o o w i w
=+ (=1 (=31 L f3a] (=2 [2a]) (=11 oy } (=2 o .
S 9 o s ~ o i o8 =] i — = i — = i
= = =1 : — | \ \
e— o [- " S = e - = g - ot o - - - Pl
B -8B .8 H ‘BB ‘B H H_ ‘E_# ‘B _H_ ‘B ‘A H_ 'H_ '\ 8_'H#
: o M o M i o W — o W i M — M o M -~ H ~ o M = - o = B ~ o H

= & o - a — . b . .

= o4 - s o o o s o o

& & & & & ! A & oo A & = = - - Ve] \ & w Vo o '8

— = o [o X o+ - i X @ [' [e X o 22] > =} = Ja] - m i = " = [[] — 2]

w w w W w2 w w w " w w w w w w w w w w

66

© BlockDesign, 2007

Model Verification:

Properties to be checked:

CTL formulae:

Miscellaneous:

Figure 92 RG of TEST_MUINT _Inputs_Z_S1

67

© BlockDesign, 2007

Model Name: MSampled

Model Descriptions:

MSampled models rendezvous of M event input signals without the reset option. The
following diagram illustrates a rendezvous of two event input signals, which can be extended
to M inputs easily. The event output signal SO will be issued upon the occurrence of

Sampled1 and Sampled2.

Model Details:

Sampled?l S50 Sampledi
Sampled?2
Sampled2
(a) (b)

Figure 93 MSampled.xml

Simple Testing Scenario:

o 2l ol " Sampled1 S0
02 KM Sampled2

Figure 94 TEST_MSampled.xml

68

© BlockDesign, 2007

o

el
A, —»O
p2
MSampled 51
7 enl
t.a .-".‘_ .:
< el ol g
en ks 3
ei1 O\~ .
4
(a) (b)

Figure 95 MSampled_S1.xml

ViVe Reachability Graph:

Figure 96 RG of TEST_MSampled_S1

Model Verification:

Properties to be checked:

CTL formulae:

69

© BlockDesign, 2007

Miscellaneous:

70

© BlockDesign, 2007

Model Name: E_F TRIG

Model Descriptions:
E_F_TRIG models Boolean falling edge detection.

Model Details:

ElWWa E_D FF_ALG E_SWITCH_ALG

El

QT

Sample Sampled
oy lssueEQ Issued

True True_Qut
False False_oOut

QI_F

Figure 97 E_F_TRIG.xml

Simple Testing Scenario:

EF TRIG.S1 E_F_TRIG

1} gl eol (—" —wQ El EOQ
00T]— e]QLT
00_F[]— — e[]OLF

Figure 98 TEST_E_F_TRIG_S1.xml

Figure 99 E_F_TRIG_S1.xml

ViVe Reachability Graph:

Model Verification:

Properties to be checked:

CTL formulae:

71

EO —0

EQ

© BlockDesign, 2007

Miscellaneous:

72

© BlockDesign, 2007

Model Name: E_ R TRIG

Model Descriptions:
E_R_TRIG models Boolean rising edge detection.

Model Details:

E_D_FF_ALG E_SWITCH_ALG

Boolean_Input

a7 o Sample Sampled o

oy [ssueED Issued

[True True_Cut [

[| False False_Out]

QI_F

Figure 100 E_R_TRIG.xml

Simple Testing Scenario:

E R _TRIG_S1

L i1 go

Q0_T[}——e[]QLT
Q0_F [—®[]CLF

E_R_TRIG

Figure 101 TEST_E_R_TRIG_S1.xml

Figure 102 E_R_TRIG _S1.xml

ViVe Reachability Graph:

Model Verification:

Properties to be checked:

CTL formulae:

73

EO

© BlockDesign, 2007

Miscellaneous:

74

© BlockDesign, 2007

Model Name: <Sample>
Model Descriptions:

Model Details:

Simple Testing Scenario:

ViVe Reachability Graph:

Model Verification:

Properties to be checked:

CTL formulae:

Miscellaneous:

75

